

Automated RT interpretation through Artificial Intelligence (AI)

Where we come from traditionally

- Highly manual acquisition processes that are hard to scale
- Usage of analog film requires manual evaluation and physical archiving
- High consumable costs and extensive use of chemicals
- NDT is a major bottleneck in most operations

The transformation path in NDT

Highly automated inspection machines

Digitalization challenges

- Overwhelming amounts of data
- Information is covered by noise
- Lack of skilled personnell for interpretation

Digitalization of decision making

- Bottle neck shifted from the physical into the digital space
- Employees require smart tools to help with decision making
- Shorter delay until decision increases value

Who has tried ChatGPT?

That is not what we are talking about !

	= ×
SHRINKAGE spon	ge
Area:	Width:
4,76 mm²	3.75 mm
Area (Pixel):	Height:
1149 pix²	3.5 mm

COMPASS The X-ray CO-PILOT

Make better decisions faster!

Drivers for AI in NDT

- "Leadership askes me to hire 100 new X-ray techs for all sites in the next months. We will be going to every single recruitment event in the respective areas, but I have no hopes that we will fill all positions"
 - -- A Level III of a major Tier 1 aerospace supplier
 - \rightarrow Lack of skilled labor
- Quality issues and customer complaints from escape parts
 - \rightarrow Need for increasingly higher quality standards
- Throughput increases due to volume increases
 - \rightarrow Efficiency and cycle time demands

Why is AI/ADR worth to consider?

Technical feasibility of automation for work activities

Time spent in all US occupations, %

Source: https://www.mckinsey.com/business-functions/people-and-organizational-performance/our-insights/the-moment-of-truth-in-customer-service

Why is AI/ADR worth to consider?

- Quality (based on studies)
 - Agreement rate of operators with themselves: 70% 90%
 - Agreement rate of operators with each others: 60% 85%

 AI agreement rate with itself: 	100%
 Average AI accuracy 	> 98%

- Human inspectors have fluctuating probability of detection (POD) depending on internal and external factors
- Human POD decreases over time (Fatigue)
- AI has constant POD
- Efficiency
 - Average human operators need 20s 60s to evaluate a single X-ray image (depending on the part)
 - AI requires less than 0.2s to evaluate a single X-ray image
 - Al assisted operators require on average 7 seconds per image

AI – Practical Example

Raw image

Image with filter

Result

Summary – tasks done by AI tool

- Indication localization
- Indication classification (defect type)
- Indication measurements (diameter, area, etc.)
- Probability for each indication
- Generation of sorted indication list
- \rightarrow 100 200 ms cycle time

Path to an AI Solution: Process for new cases

Step 1 Step 2 Step 3 **Business Understanding** Data Science PoC Evaluation Modeling **Technical Evaluation** Hyper-**Business Evaluation** Feature Model parameter **Technical Understanding** Engineering Training Optimization Prototype Evaluation with live-data Technical Deep Dive Data Deep Data Understanding **Data Preparation** Dive 1001 8101 8110 - -(P) **Final Deployment** Step 4 End-to-End Integration **Data Creation**

17

General AI Workflow – Segmentation Framework

Finetuning **Training** Process

18

General AI Workflow – Image Pipeline

The outcome

20

VisiConsult X-ray Systems & Solutions

The x.OS

Qualification and Statistics

Designation: E3327/E3327M - 21

Standard Guide for the Qualification and Control of the Assisted Defect Recognition of Digital Radiographic Test Data¹

Confusion matrix – proving quality

Class Comparison Confusion Matrix

Image wise Performance Tracking

Aerospace Welds

Multiclass defect segmentation on welds 4 customer-specific classes:

- 1. cavity,
- 2. foreign material,
- 3. burn through,
- 4. lack of fusion

Dice / TPR per class

Eval Data	Pore	Inclusion	Lack of Fusion	Burn Through	
Indication TPR	97,94%	94,92%	97,88%	100%	
ø Dice-Score	83,6%	78,17%	96,98%	99,69%	
No. Indications	1302	301	158	71	
TP	1142	187	139	68	
FN	24	10	3	0	
FP	136	104	16	3	

25

Oil & Gas Welds

Multiclass defect segmentation on welds Classes according to DIN EN ISO 6520-1:2007 Grouped to 12 "head"-classes:

- 1. Cracks,
- 2. Low density inclusions,
- 3. Elongated cavities,
- 4. Solid inclusions,
- 5. Lack of fusion,
- 6. Lack of penetration,
- 7. Imperfect shape and dimension,
- 8. Undercuts,
- 9. Excessive weld metal,
- 10. Burn-trough,
- 11. Incomplete filled groove,
- 12. Spatter

Groundtruth information

								_		
EI	Record carrier	IQI sensi	tivity		Result references no.	Remarks ²	Result	Indications	BK	Date
no.		location:	S		according to DIN EN ISO 6520-1 3			from - to (mm)	no. 1	
01		W 15	H 5	10D	WIRR		а		85	12.06.21
01		W 15	H 5	10D	2011		na	1900 - 1920	85	12.06.21
01		W 15	H 5	10D	TNW		а		85	12.06.21
01		W 15	H 5	10D	2014		na	2520 - 2590	85	12.06.21
									-	

Automotive Castings

Multiclass defect segmentation on castings Classes: according to ASTM references Clustered to 6 "head"-classes:

- 1. Foreign material,
- 2. Gas hole,
- 3. Gas porosity,
- 4. Cold fill,
- 5. Shrinkage cavity,
- 6. Shrinkage filiament

Database:

Pretrained model weights

In progress:

Pretrained model weights + 7945 **multiclass** images + 7TB of data data

Prediction speed:1024 x 1024 : 226ms256 x 256:120ms

Food Industry

Binary fishbone segmentation on fillets

Database:

Pretrained model weights (of inclusion defects) 5 high-res images with GT masks (4096 x 6144)

256 x 256 Tiles – size independant prediction

Prediction speed:

4096 x 6144 : 4000ms 256 x 256: 120ms

> 99% detection accuracy

It is a marathon, not a sprint ...

- 20% workload for 80% result
- 80% additional workload for additional 20% result

29

Implementation phases

Phase 1: Assisted Al

- Al supports decision making
- Al segments and measures all indications
- Operator performs final decision

\rightarrow > 60% performance increase

Phase 2: Assisted AI + Sorting

- Al supports decision making
- Al segments and measures all indications
- Operator performs final decision
- Al sorts out OK images (automatic OK)
- → 50% less images

Phase 3: Full Al

- Al performs decision making
- Al segments and measures all indications
- Operator only supervises and assists Al where necessary

→ Fully automated

Human – Machine collaboration

- Smart usage of data to gain insights
- Application of AI to screen huge data pools
- Assisted application of AI to enhance human performance

Quality, efficiency and satisfaction gain

Figure 1: Treatment Effects on Productivity

Figure 4: Effects on Subjective Outcomes

VisiConsult NDT 4.0 strategy

Computed Tomography

Simulation

Artificial Intelligence

Thanks for your attention

FREE digitalization & AI assessment

- Exclusive for Webinar participants
- Evaluation of project ROI
- Solution development consulting
- 6 months free AI subscription license

Send an E-Mail with the Subject "**Digitalization**" to:

info@visiconsult.de

